The index laws used previously can also be applied to rational indices, or
indices which are written as a fraction.
Answer :
Media Belajar Insan Ilmiah
if n is positive integer,then
an is the product from a with n factors, so:
an = a x a x a x a x .
. . . x a
with a as many as n factors
|
(-1)1 = -1
|
(-2)1 = -2
|
(-1)2 = -1 x -1 = 1
|
(-2)2 = -2 x -2 = 4
|
(-1)3 = -1 x -1 x -1 = -1
|
(-2)3 = -2 x -2 x -2 = -8
|
(-1)4 = -1 x -1 x -1 x -1 = 1
|
(-2)4 = -2 x -2 x -2 x -2 = 16
|
index Law
|
Information
|
am x an = am+n
|
To multiply numbers with the same base, keep the base and add the indices.
|
(am)/(an) = am-n , a ≠ 0
|
To devide numbers with the same base, keep
the base and subtract the indices.
|
(am)n = am x n
|
When raising a power to a power, keep the base and multiply the indices.
|
(ab)n = anbn
|
The power of a product is the product of the
powers.
|
(a/b)n = an/bn, b ≠ 0
|
The power of a quotient is the quotient of the powers.
|
a0 = 1, a ≠ 0
|
Any non-zero number raised to the power of
zero is 1.
|
a-n =
1/an dan 1/a-n = an
|
Jika n adalah bilangan
bulat positif, dimana an adalah hasil dari a dengan n
faktor.
an = a x a x a x a x .
. . . x a
nilai a sebanyak n
faktor
|
(-1)1 = -1
|
(-2)1 = -2
|
(-1)2 = -1 x -1 = 1
|
(-2)2 = -2 x -2 = 4
|
(-1)3 = -1 x -1 x -1 = -1
|
(-2)3 = -2 x -2 x -2 = -8
|
(-1)4 = -1 x -1 x -1 x -1 = 1
|
(-2)4 = -2 x -2 x -2 x -2 = 16
|
Hukum Pemangkatan
|
Keterangan
|
am x an = am+n
|
Untuk perkalian angka-angka dengan basis yang sama maka basisnya tetap
dan menambahkan pangkatnya.
|
(am)/(an) = am-n , a ≠ 0
|
Untuk pembagian angka-angka dengan basis
yang sama maka basisnya tetap dan mengurangi pangkatnya.
|
(am)n = am x n
|
Jika muncul pangkat dipangkatkan maka basisnya tetap dan kalikan kedua
pangkat tersebut.
|
(ab)n = anbn
|
Pangkat dari hasil perkalian angka-angka
bernilai sama dengan perkalian dari hasil pemangkatannya.
|
(a/b)n = an/bn, b ≠ 0
|
Pangkat dari hasil pembagian angka-angka bernilai sama dengan pembagian
dari hasil pemangkatannya.
|
a0 = 1, a ≠ 0
|
Untuk setiap angka bukan nol yang
dipangkatkan dengan nol maka hasilnya 1.
|
a-n =
1/an dan 1/a-n = an
|
Jenis Barang | 1988 | 1989 | 1990 | 1991 |
A | 2,542.00 | 2,673.00 | 2,890.00 | 2,994.00 |
B | 12,432.00 | 12,653.00 | 12,867.00 | 12,908.00 |
C | 3,321.00 | 3,346.00 | 3,390.00 | 3,450.00 |
D | 8,567.00 | 8,672.00 | 8,709.00 | 8,720.00 |
Indeks Harga Konstan | ||||
Jenis Barang | 1988 | 1989 | 1990 | 1991 |
A | 100.00 | 105.15 | 113.69 | 117.78 |
B | 100.00 | 101.78 | 103.50 | 103.83 |
C | 100.00 | 100.75 | 102.08 | 103.88 |
D | 100.00 | 101.23 | 101.66 | 101.79 |
Indeks Harga Berantai | |||
Jenis Barang | 1989 | 1990 | 1991 |
A | 105.15 | 108.12 | 103.60 |
B | 101.78 | 101.69 | 100.32 |
C | 100.75 | 101.32 | 101.77 |
D | 101.23 | 100.43 | 100.13 |
r 1988 | r 1989 | r 1990 | r 1991 |
1.00 | 1.05 | 1.14 | 1.18 |
1.00 | 1.02 | 1.03 | 1.04 |
1.00 | 1.01 | 1.02 | 1.04 |
1.00 | 1.01 | 1.02 | 1.02 |
Indeks Harga Agregat | ||||
Indeks | 1988 | 1989 | 1990 | 1991 |
relatif | 100.00 | 102.23 | 105.23 | 106.82 |
Copyright © 2010 Ridho Ananda | Blogger Templates by Splashy Templates | Psd by BevelAndEmboss